首页> 外文OA文献 >Short-term density forecasting of wave energy using ARMA-GARCH models and kernel density estimation
【2h】

Short-term density forecasting of wave energy using ARMA-GARCH models and kernel density estimation

机译:使用ARMA-GARCH模型和核密度估计的波浪能短期密度预测

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Wave energy has great potential as a renewable source of electricity. Installed capacity is increasing, and developments in technology mean that wave energy is likely to play an important role in the future mix of electricity generation. Short-term forecasts of wave energy are required for the efficient operation of wave farms and power grids, as well as for energy trading. The intermittent nature of wave energy motivates the use of probabilistic forecasting. In this paper, we evaluate the accuracy of probabilistic forecasts of wave energy flux from a variety of methods, including unconditional and conditional kernel density estimation, univariate and bivariate autoregressive moving average generalised autoregressive conditional heteroskedasticity (ARMA-GARCH) models, and a regression-based method. The bivariate ARMA-GARCH models are implemented with different pairs of variables, such as (1) wave height and wave period, and (2) wave energy flux and wind speed. Our empirical analysis uses hourly data from the FINO1 research platform in the North Sea to evaluate density and point forecasts, up to 24 h ahead, for the wave energy flux. The empirical study indicates that a bivariate ARMA-GARCH model for wave height and wave period led to the greatest accuracy overall for wave energy flux density forecasting, but its usefulness for point forecasting decreases as the lead time increases. The model also performed well for wave power data that had been generated from wave height and wave period observations using a conversion matrix.
机译:波浪能作为可再生能源具有巨大的潜力。装机容量正在增加,技术的发展意味着波浪能可能在未来的发电组合中发挥重要作用。波浪能的短期预测对于波浪场和电网的有效运行以及能源交易都是必需的。波能的间歇性促使人们使用概率预报。在本文中,我们通过多种方法评估波能通量概率预报的准确性,包括无条件和有条件的核密度估计,单变量和双变量自回归移动平均广义自回归条件异方差(ARMA-GARCH)模型以及基于方法。双变量ARMA-GARCH模型通过不同的变量对来实现,例如(1)波浪高度和波浪周期,以及(2)波浪能通量和风速。我们的实证分析使用的是北海FINO1研究平台的每小时数据,以评估波浪能通量的密度和预测点,最长达24小时。实证研究表明,波高和波周期的双变量ARMA-GARCH模型在波能通量密度预测中总体上具有最高的准确性,但随着提前时间的增加,其在点预测中的实用性下降。该模型对于使用转换矩阵从波浪高度和波浪周期观测中生成的波浪功率数据也表现良好。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号